The last part of this theorem may also be inferred from the preceding theorem. Constants λ_p and Λ_p for which (6) holds can be explicitly determined.

Schottky's theorem enables us to extend the above results for bounded functions to the case of functions f(z) omitting two values provided the sequence $w_n = f(z_n)$ is bounded. The case $|w_n| \to \infty$ can be treated by other methods.

- ¹ O. Szász, Math Zeitschrift, 8, 303-309 (1920).
- ² J. E. Littlewood, Proc. London Math. Soc., 23, 507 (1924); A. J. Macintyre, Jour. London Math. Soc., 11, 7-11 (1936).

DIFFERENTIAL CALCULUS IN LINEAR TOPOLOGICAL SPACES¹

By A. D. MICHAL

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY

Communicated July 9, 1938

1. Introduction.—The most valuable definitions of differentials of functions in the classical differential calculi of finite as well as of infinite dimensional spaces are those that give the differential as a "first order approximation" to the difference. In this paper we give a definition of such a differential for functions whose arguments are in a linear topological space T_1 and whose values are in a linear topological space T_2 , not necessarily the same as T_1 . Some of the fundamental properties of this differential are given as well as the properties of other related topological differentials.

We wish to emphasize here the fact that the spaces T_1 and T_2 are not necessarily metric—not even metrizable—and that the differential calculus in linear topological spaces has important applications to general differential geometry, general dynamics and general continuous group theory.

2. Topological M-Differential.—By a linear topological space we shall mean an abstract linear space with a Hausdorff topology in which the functions x + y and αx are respectively continuous functions of both variables.

Let T_1 and T_2 be any two linear topological spaces. A function l(x) on T_1 to T_2 is termed *linear* if it is additive and continuous—hence homogeneous of degree one.

DEFINITION OF M-DIFFERENTIAL.³ Let f(x) be a function with values in T_2 and defined on a Hausdorff neighborhood S_x , of $x_0 \, \epsilon T_1$. The function f(x) will be said to be M-differentiable at $x = x_0$ and $f(x_0; \delta x)$ will be called an M-differential of f(x) at $x = x_0$ with increment δx if

(1) there exists a linear function $f(x_0; \delta x)$ of δx with arguments in T_1 and values in T_2

(2) there exists a function $\epsilon(x_0, x_1, x_2)$ with arguments in T_1 and values in T_2 such that

(a)
$$\epsilon(x_0, 0, x) = 0$$
 for all $x \in T_1$

(b)
$$\epsilon(x_0, x_1, \lambda x_2) = \lambda \epsilon(x_0, x_1, x_2)$$

for all $\lambda > 0$, for all x_1 in some Hausdorff neighborhood of $0 \epsilon T_1$, and for all $x_2 \epsilon T_1$

(c)
$$\epsilon(x_0, x_1, x_2)$$

is continuous in (x_1, x_2) at $x_1 = 0$, $x_2 = x_2$ for all $x_2 \in T_1$.

(3) there exists some Hausdorff neighborhood S_0' of $0\epsilon T_1$ such that for all $\delta x \epsilon S_0'$

$$f(x_0 + \delta x) - f(x_0) - f(x_0; \delta x) = \epsilon(x_0, \delta x, \delta x).$$

THEOREM 1. If an M-differential of f(x) at $x = x_0$ exists, then it is unique and f(x) is continuous at $x = x_0$.

THEOREM 2. If $f_1(x)$ and $f_2(x)$ are M-differentiable at $x = x_0$ then $f_3(x) = \alpha f_1(x) + \beta f_2(x)$ is M-differentiable at $x = x_0$ and

$$f_3(x_0; \delta x) = \alpha f_1(x_0; \delta x) + \beta f_2(x_0; \delta x).$$

THEOREM 3. Let T_3 be a third linear topological space. If f(x) on $S_{x_0} \subset T_1$ to T_2 is M-differentiable at $x = x_0$ and if $\phi(y)$ on $f(S_x)$ to T_3 is M-differentiable at $y_0 = f(x_0)$, then $\psi(x) = \phi(f(x))$ is M-differentiable at $x = x_0$ and

$$\psi(x_0; \delta x) = \phi(f(x_0); f(x_0; \delta x)).$$

3. OTHER DIFFERENTIALS AND THEIR RELATION TO THE M-DIFFERENTIAL. DEFINITION OF G-DIFFERENTIAL. Let f(x) be a function defined on a Hausdorff neighborhood S_x , of $x_0 \in T_1$ and with values in T_2 . We shall say that f(x) is G-differentiable at $x = x_0$ and $f(x_0, \delta x)$ is its G-differential at $x = x_0$ with increment δx if for any chosen $\delta x \in T_1$:

Given any Hausdorff neighborhood V_0 of $0 \epsilon T_2$ there exists a $\delta > 0$ such that

$$\frac{f(x_0 + \lambda \delta x) - f(x_0)}{\lambda} \epsilon f(x_0, \delta x) + V_0$$

for each λ satisfying $0 < |\lambda| < \delta$.

THEOREM 4. If f(x) is M-differentiable at $x = x_0$, then f(x) is G-differentiable at $x = x_0$ and the two differentials are equal.

DEFINITION OF H M-DIFFERENTIAL.⁵ Let f(x) be a function with values in T_2 and defined on a Hausdorff neighborhood S_{x_0} of $x_0 \in T_1$, and let $x(\lambda)$ be any chosen function of a real variable λ with values in S_{x_0} and possessing a derivative $\frac{dx(\lambda)}{d\lambda}$ at any chosen $\lambda = \lambda_0$. Write $x_0 = x(\lambda_0)$. The function f(x) will be said to be H M-differentiable at $x = x_0$ with $f(x_0:\delta x)$ as its H M-differentiable $f(x_0:\delta x)$ as its $f(x_0:\delta x)$ as its $f(x_0:\delta x)$ and $f(x_0:\delta x)$ and $f(x_0:\delta x)$ as its $f(x_0:\delta x)$ and $f(x_0:\delta x)$ and $f(x_0:\delta x)$ as its $f(x_0:\delta x)$ and $f(x_0:\delta x)$ as its $f(x_0:\delta x)$ and $f(x_0:\delta x)$ and

ferential at $x = x_0$ if there exists a linear function $f(x_0:\delta x)$ of δx having arguments in T_1 and values in T_2 such that for every admissible $x(\lambda)$:

(1)
$$\frac{\mathrm{d}}{\mathrm{d}\lambda} f(x(\lambda)) \text{ exists at } \lambda = \lambda_0$$

(2)
$$\frac{d}{d\lambda}f(x(\lambda)) = f\left(x_0: \frac{dx(\lambda)}{d\lambda}\right) \text{ for } \lambda = \lambda_0.$$

THEOREM 5. If f(x) is M-differentiable at $x = x_0$, then f(x) is H M-differentiable at $x = x_0$ and the two differentials are equal.

THEOREM 6. If the linear topological spaces T_1 and T_2 are complete linear normed spaces (Banach spaces) and if f(x) is Fréchet differentiable⁶ at $x = x_0$, then f(x) is M-differentiable at $x = x_0$ and the two differentials are equal.

THEOREM 7. If the linear topological spaces T_1 and T_2 are finite dimensional arithmetic spaces and if f(x) is differentiable at $x = x_0$ in the Stolz-Young-Fréchet sense, then f(x) is M-differentiable at $x = x_0$ and the differentials are equal. Conversely if f(x) is M-differentiable at $x = x_0$, then it is differentiable in the Stolz-Young-Fréchet sense.

- ¹ Presented to the American Mathematical Society, April 9, 1938.
- ² In case T_1 is a special linear topological space and T_2 is the same space as T_1 , a certain topological differential was defined by Michal and Paxson. It is still an open question whether the differentiability theorem on the composition of functions is valid for the Michal-Paxson differential. See Michal, A. D., and Paxson, E. W.: (1) "La Différentielle dans les Espaces Linéaires Abstraits avec une Topologie," Comptes Rendus, Paris, 202, 1741–1743 (1936); (2) "The Differential in Abstract Linear Spaces with a Topology," Comptes Rendus de la Soc. de Sc. de Varsovie, XXIX, 106–121 (1936).
- 3 Another interesting type of differential can be defined by merely changing the equality relation in condition (3) of the definition for an M-differential into a set inclusion relation.
- ⁴ By $f(x_0, \delta x) + V_0$ we mean the set of all elements $f(x_0, \delta x) + y$ as y ranges over the set V_0 .
- ⁵ A modified H M-differential is obtained if $λ_0$ is always taken to be $λ_0 = 0$. This modified H M-differential is itself the abstraction of a differential for a function space studied recently by Fréchet. See page 244 of Fréchet, M., "Sur la Notion de Différentielle," Journal de Math. Pures et Appl., 16, 233–250 (1937).
- ⁶ Fréchet, M., "La Notion de Différentielle dans l'Analyse Générale," Annales Ecole Norm., XLII, 293-323 (1925).